Sheldrick, G. M. (1993). SHELXL93. Program for the Refinement of Crystal Structures. Univ. of Göttingen, Germany.

Tobe, Y. (1992). Propellanes in Carboxylic Cage Compounds: Chemistry and Applications, edited by E. Osawa & O. Youemitsu, pp. 125-153, and references therein. Weinheim: VCH.

Acta Cryst. (1995). C51, 2381-2383

4-Sulfonyl-1,6-dioxaspiro[4.5]decanes

Inés Alonso, Isabel López-Solera and Paul R. Raithby

Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, England

(Received 9 March 1995; accepted 10 May 1995)

Abstract

The relative configurations of 4-(phenylsulfonyl)-1,6dioxaspiro[4.5]decan-10-one ($C_{14}H_{16}O_5S$) and its 2,7dimethyl derivative, 2,7-dimethyl-4-(phenylsulfonyl)-1,6-dioxaspiro[4.5]decan-10-one ($C_{16}H_{20}O_5S$), are confirmed.

Comment

Since the spiroketal unit is found in a wide variety of natural products (Mishima *et al.*, 1975; Kato & Scheuer, 1974), considerable attention has been focused on the development of methods for the synthesis of this moiety (Perron & Albizati, 1989). Most of these methods are based on the thermodynamically controlled acid-catalysed spiroketalization of dihydroxyketones. However, recently, some one-step convergent syntheses from two fragments have been described (Gosselin, Bonfand, Hayes & Maignan, 1994; Ann & Cohen, 1994; Boons, Downham, Kim, Ley & Woods, 1994; Carretero, Díaz & Rojo, 1994).

The structures, with the atomic numbering schemes, of the title compounds (1) and (2) are shown in Figs. 1 and 2. The non-aromatic six-membered ring has a distorted-chair conformation which is slightly flattened around the carbonyl group. This effect is greater for compound (1) [torsion angle C8–C9–C10–C5 35.5 (6) in (1) and 46.3 (3)° in (2)]. The five-membered ring conformation is slightly different in these two compounds. In (1), the ring has an envelope conformation

with C4 (-0.53 Å) out of the plane defined by O1, C2, C3 and C5, whereas in (2) the ring has a half-envelope conformation with C3 (-0.35 Å) and C4 (0.28 Å) out of the plane defined by the other three atoms. The shortening of the C5—O1 and C5—O6 bond distances and the geometrical disposition of these groups (both in axial positions) are similar in the two compounds, probably to maximize the thermodynamic anomeric effect (Deslongchamps, Rowan, Pothier, Sauvé & Saunders, 1981). The sulfone group is in a pseudo-equatorial position in both compounds. In (2), the methyl groups C21 and C71 are in pseudo-axial and equatorial positions, respectively. The most significant difference is the conformation around the C4—S1 bond [torsion angle C5—C4—S1—C11 -42.4 (4) in (1) and 70.5 (2)° in (2)].

Each molecule is involved in one hydrogen bond. In (1), C14—H14···O12ⁱ = 2.490 (6), C14···O12ⁱ = 3.408 (6) Å and C14—H14···O12ⁱ = 169.3 (1)° [symmetry code: (i) x, y + 1, z]; in (2), C4—H4···O10ⁱⁱ = 2.550 (3), C4···O10ⁱⁱ = 3.401 (3) Å and C4—H4···O10ⁱⁱ = 145.1 (1)° [symmetry code: (ii) 1 - x, 1 - y, 2 - z].

Fig. 1. Molecular structure of (1) showing 50% probability displacement ellipsoids.

Fig. 2. Molecular structure of (2) showing 50% probability displacement ellipsoids.

C14H16O5S AND C16H20O5S

C11

C12

C13

C14

C15

C16

0.2335 (4)

0.3353 (5)

0.3108 (6)

0.1868 (6)

0.0852 (5)

0.1076 (4)

1.1293 (5)

1.2328 (6)

1.3913 (6)

1.4431 (6)

1.3391 (6)

1.1798 (5)

108.6 (3)

104.5 (3)

111.5 (3)

104.9(3)

115.9 (4)

114.3 (3)

110.4 (4)

Crystals of (1) and (2) were grown by slow evaporation from an acetone solution of the compound placed in a bath of toluene (Carretero, Rojo, Díaz, Hamdouchi & Poveda, 1995).

Compo

-					
Compound (1) Crystal data		Table 2. Sele	ected geometr	ic parameters (Å	, °) for (1)
C ₁₄ H ₁₆ O ₅ S $M_r = 296.33$ Monoclinic $P2_1/c$ a = 10.832 (2) Å b = 8.524 (2) Å c = 15.634 (3) Å $\beta = 108.31$ (3)° V = 1370.4 (5) Å ³ Z = 4 $D_x = 1.436$ Mg m ⁻³	Mo $K\alpha$ radiation $\lambda = 0.71073$ Å Cell parameters from 25 reflections $\theta = 7-16^{\circ}$ $\mu = 0.253$ mm ⁻¹ T = 293 (2) K Transparent block $0.30 \times 0.28 \times 0.27$ mm Colourless	$\begin{array}{c} 01-C5\\ 01-C2\\ C2-C3\\ C3-C4\\ C4-C5\\ C4-S1\\ C5-06\\ C5-C10\\ C5-01-C2\\ 01-C2-C3\\ C2-C3-C4\\ C5-C4-S1\\ C5-C4-S1\\ C3-C4-S1\\ C3-C4-S1\\ 06-C5-01\\ \end{array}$	$\begin{array}{c} 1.411 (5) \\ 1.435 (5) \\ 1.504 (6) \\ 1.529 (6) \\ 1.523 (6) \\ 1.797 (4) \\ 1.407 (5) \\ 1.536 (6) \\ 110.4 (3) \\ 107.8 (4) \\ 102.1 (4) \\ 103.0 (3) \\ 118.9 (3) \\ 112.0 (3) \\ 112.0 (3) \\ 111.1 (3) \end{array}$	06C7 C7C8 C8C9 C9C10 C10010 S1012 S1011 S1C11 C7C8C9 C10C9C8 010C10C9 010C10C5 C9C10C5 O12S1011 012S1C11	1.445 (5) 1.493 (6) 1.505 (7) 1.496 (7) 1.213 (5) 1.437 (3) 1.438 (3) 1.764 (4) 110.7 (4) 113.2 (4) 123.6 (4) 119.0 (4) 117.3 (4) 118.6 (2) 108.3 (2)

Data collection

Rigaku AFC-7 four-circle-	$R_{\rm int} = 0.0227$
diffractometer	$\theta_{\rm max} = 22.50^{\circ}$
$2\theta/\omega$ scans	$h = -11 \rightarrow 1$
Absorption correction:	$k = 0 \rightarrow 9$
none	$l = 0 \rightarrow 16$
1872 measured reflections	3 standard ref
1791 independent reflections	monitored e
1155 observed reflections	reflection
$[I>2\sigma(I)]$	intensity de

Refinement _

Refinement on F ²	$(\Delta/\sigma)_{\rm max} < 0.001$
$R[F^2 > 2\sigma(F^2)] = 0.0496$	$\Delta \rho_{\rm max} = 0.194 \ {\rm e} \ {\rm \AA}^{-3}$
$wR(F^2) = 0.1037$	$\Delta \rho_{\rm min} = -0.228 \text{ e } \text{\AA}^{-3}$
S = 1.081	Extinction correction: no
1790 reflections	Atomic scattering factors
181 parameters	from International Tal
Only coordinates of H atoms	for Crystallography (1
refined	Vol. C, Tables 4.2.6.8
$w = 1/[\sigma^2(F_o^2) + (0.0442P)^2]$	6.1.1.4)
+ 0.8724 <i>P</i>]	
where $P = (F_o^2 + 2F_c^2)/3$	

reflections d every 100 ions decay: none $\Delta/\sigma)_{\rm max} < 0.001$ $\Delta \rho_{\rm max} = 0.194 \ {\rm e} \ {\rm \AA}^{-3}$ $\Delta \rho_{\rm min} = -0.228 \ {\rm e} \ {\rm \AA}^{-3}$

11

Compound (2) Crystal data

O6---C5---C4

01-C5-C4

06-C5-C10

O1-C5-C10

C4-C5-C10

C5-06-C7

06-C7-C8

mensity decay. none	*
$\Delta/\sigma)_{max} < 0.001$ $\rho_{max} = 0.194 \text{ e } \text{Å}^{-3}$ $\rho_{min} = -0.228 \text{ e } \text{Å}^{-3}$ ktinction correction: none tomic scattering factors from <i>International Tables</i> <i>for Crystallography</i> (1992, Vol. C, Tables 4.2.6.8 and 6.1.1.4)	$C_{16}H_{20}O_5S$ $M_r = 324.38$ Triclinic $P\overline{1}$ $a = 8.613 (2) \text{ Å}$ $b = 10.453 (2) \text{ Å}$ $c = 10.561 (2) \text{ Å}$ $\alpha = 63.55 (3)^{\circ}$ $\beta = 68.81 (3)^{\circ}$ $\gamma = 84.74 (3)^{\circ}$ $V = 791.0 (3) \text{ Å}^3$ $Z = 2$ $D_x = 1.362 \text{ Mg m}^{-3}$

Data collection

1)	Rigaku AFC-7 four-circle- diffractometer	$R_{\rm int} = 0.0188$ $\theta_{\rm max} = 76.78^{\circ}$
	$2\theta/\omega$ scans	$h = -10 \rightarrow 10$
	Absorption correction:	$k = -10 \rightarrow 0$
U_{eq}	none	$l = -13 \rightarrow 10$
.0578 (14)	3113 measured reflections	3 standard reflections
.0461 (12)	2937 independent reflections	monitored every 100
.0350 (11)	2659 observed reflections	reflections
.0335 (10) .0395 (8)	$[I > 2\sigma(I)]$	intensity decay: none
.0508 (13)		
.0609 (15)	Refinement	
.064 (2)	2.109	
.0427 (12)	Refinement on F^2	$(\Delta/\sigma)_{\rm max} = 0.064$
.0677 (11) -	$D(r^2, n (r^2)) = 0.0407$	A 0,100 Å-3

 $R[F^2 > 2\sigma(F^2)] = 0.0427$ $wR(F^2) = 0.1199$ S = 1.077

none $\Delta \rho_{\rm max} = 0.189 \ {\rm e} \ {\rm \AA}^{-3}$

0.0335 (11)

0.0484 (13)

0.0597 (15)

0.0600 (15)

0.0540 (14)

0.0431 (12)

108.3 (2)

105.6 (2)

109.6 (2)

105.9 (2)

120.2 (3)

118.4 (3)

0.1372 (3)

0.1633 (3)

0.1460 (3)

0.1057 (3)

0.0802 (3)

0.0954 (3)

011-S1-C11

012-S1-C4

011-S1-C4

C11-S1-C4

C12-C11-S1

C16-C11-S1

Cu $K\alpha$ radiation $\lambda = 1.54178 \text{ Å}$

reflections

 $\mu = 2.008 \text{ mm}^{-1}$

Transparent block

T = 293 (2) K

 $\theta = 20-25^{\circ}$

Colourless

Cell parameters from 25

 $0.30 \times 0.28 \times 0.25$ mm

 $\Delta \rho_{\rm min}$ = -0.512 e Å⁻³ Extinction correction: none

Table 1. Fractional atomic coordinates and equivalent isotropic displacement parameters ($Å^2$) for (1)

$$U_{\rm eq} = (1/3) \sum_i \sum_j U_{ij} a_i^* a_i^* \mathbf{a}_i \cdot \mathbf{a}_j.$$

	x	у	Ζ	U_{eq}
01	0.2412 (3)	0.9142 (3)	0.4092 (2)	0.0471 (9)
C2	0.2535 (5)	0.7499 (6)	0.3936 (3)	0.0578 (14)
C3	0.2660 (4)	0.7316 (5)	0.3010 (3)	0.0461 (12)
C4	0.2109 (4)	0.8870 (5)	0.2563 (3)	0.0350(11)
C5	0.2482 (4)	1.0025 (5)	0.3345 (3)	0.0335 (10)
06	0.3758 (2)	1.0550 (3)	0.3471 (2)	0.0395 (8)
C7	0.4238 (4)	1.1659 (5)	0.4199 (3)	0.0508 (13)
C8	0.3455 (5)	1.3133 (6)	0.4004 (4)	0.0609 (15)
C9	0.2044 (5)	1.2791 (6)	0.3871 (4)	0.064 (2)
C10	0.1542 (5)	1.1402 (5)	0.3278 (3)	0.0427 (12)
O10	0.0435 (3)	1.1293 (4)	0.2777 (2)	0.0677 (11)
S1	0.26055 (12)	0.92700 (13)	0.15903 (8)	0.0414 (4)
011	0.3975 (3)	0.8972 (4)	0.1800 (2)	0.0626 (10)
012	0.1716 (3)	0.8414 (4)	0.0863 (2)	0.0616(10)

2937 reflections
199 parameters
Only coordinates of H atoms
refined
$w = 1/[\sigma^2(F_o^2) + (0.0650P)^2]$
+ 0.2606P]
where $P = (F_0^2 + 2F_c^2)/3$

Atomic scattering factors from *International Tables* for Crystallography (1992, Vol. C, Tables 4.2.6.8 and 6.1.1.4)

Table 3. Fractional atomic coordinates and equivalent isotropic displacement parameters $(Å^2)$ for (2)

	х	y	Ζ	U_{ea}
S1	0.70131 (6)	0.30295 (6)	0.83579 (6)	0.0533 (2)
011	0.6243 (2)	0.1883 (2)	0.9845 (2)	0.0736 (5)
012	0.8506 (2)	0.3819 (2)	0.8028 (2)	0.0766 (5)
C3	0.6044 (2)	0.5542 (2)	0.6399 (2)	0.0520 (5)
C2	0.4418 (2)	0.6274 (2)	0.6451 (2)	0.0510 (5)
C21	0.4235 (3)	0.7428 (3)	0.6968 (3)	0.0678 (6)
01	0.3113 (2)	0.51281 (15)	0.7520 (2)	0.0601 (4)
C5	0.3758 (2)	0.3874 (2)	0.8366 (2)	0.0470 (4)
C4	0.5551 (2)	0.4349 (2)	0.8014 (2)	0.0459 (4)
O6	0.37838 (14)	0.28125 (14)	0.78863 (14)	0.0475 (3)
C7	0.2149 (2)	0.2337 (2)	0.8058 (2)	0.0510 (5)
C71	0.2448 (3)	0.1265 (3)	0.7414 (3)	0.0661 (6)
C8	0.1040 (2)	0.1696 (3)	0.9711 (2)	0.0594 (5)
C9	0.0887 (3)	0.2756 (3)	1.0360 (3)	0.0711 (7)
C10	0.2573 (2)	0.3379 (2)	1.0018 (2)	0.0557 (5)
O10	0.2993 (2)	0.3512 (2)	1.0930 (2)	0.0741 (5)
C11	0.7522 (2)	0.2317 (2)	0.7038 (2)	0.0508 (5)
C12	0.6806 (3)	0.0986 (2)	0.7477 (3)	0.0601 (5)
C13	0.7329 (4)	0.0394 (3)	0.6460 (3)	0.0769 (7)
C14	0.8517 (3)	0.1131 (3)	0.5040 (3)	0.0769 (7)
C15	0.9215 (3)	0.2453 (3)	0.4611 (3)	0.0771 (7)
C16	0.8732 (3)	0.3046(3)	0.5611 (3)	0.0638 (6)

Table 4. Selected geometric parameters (Å, °) for (2)

	-		
S1-011	1.435 (2)	C5—O6	1.406 (2)
S1	1.439 (2)	C5—C4	1.527 (2)
S1-C11	1.765 (2)	C5-C10	1.536 (3)
S1-C4	1.785 (2)	O6—C7	1.458 (2)
C3—C4	1.524 (3)	C7—C8	1.510(3)
C3—C2	1.528 (3)	C7—C71	1.511 (3)
C2-01	1.449 (2)	C8—C9	1.516 (3)
C2-C21	1.506 (3)	C9—C10	1.499 (3)
01—C5	1.417 (2)	C10-010	1.207 (3)
011-S1-012	119.08 (12)	C4-C5-C10	115.8 (2)
O11—S1—C11	108.05 (10)	C3-C4C5	102.70 (15)
O12-S1-C11	106.49 (10)	C3—C4—S1	115.85 (13)
O11—S1—C4	108.28 (10)	C5-C4-S1	119.20 (14)
O12-S1-C4	104.53 (10)	C5C7	114.59 (14)
C11—S1—C4	110.24 (9)	O6C7C8	109.4 (2)
C4C3C2	101.3 (2)	O6—C7—C71	106.5 (2)
O1-C2-C21	109.5 (2)	C8—C7—C71	112.5 (2)
O1-C2-C3	104.5 (2)	C7—C8—C9	111.2 (2)
C21-C2-C3	114.2 (2)	C10C9C8	111.2 (2)
C5-01-C2	111.61 (14)	O10C10C9	124.4 (2)
O6-C5-O1	111.0 (2)	O10-C10-C5	121.5 (2)
O6-C5-C4	108.99 (14)	C9C10C5	114.1 (2)
01C5C4	104.85 (15)	C12C11S1	119.5 (2)
O6-C5-C10	111.0 (2)	C16-C11-S1	119.7 (2)
O1C5C10	105.0 (2)		

For both compounds, data collection: MSC/AFC Diffractometer Control Software (Molecular Structure Corporation, 1992a); cell refinement: MSC/AFC Diffractometer Control Software; data reduction: TEXSAN (Molecular Structure Corporation, 1992b); program(s) used to solve structures: SHELXS86 (Sheldrick, 1985); program(s) used to refine structures: SHELXL93 (Sheldrick, 1993); molecular graphics: SHELXTL-Plus (Sheldrick, 1991); software used to prepare material for publication: SHELXL93.

©1995 International Union of Crystallography Printed in Great Britain – all rights reserved We thank the SERC for funding for the AFC-7 diffractometer, the DGICYT for a grant to ILS and Europharma for a grant to IA. We also thank Nuria Díaz for preparing the crystals of these compounds.

Lists of structure factors, anisotropic displacement parameters, Hatom coordinates and complete geometry have been deposited with the IUCr (Reference: KA1126). Copies may be obtained through The Managing Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

References

- Ann, Y. & Cohen, T. (1994). J. Org. Chem. 59, 3142-3150.
- Boons, G.-J., Downham, R., Kim, K. S., Ley, S. V. & Woods, M. (1994). *Tetrahedron*, **50**, 7157–7176.
- Carretero, J. C., Díaz, N. & Rojo, J. (1994). Tetrahedron Lett. 35, 6917-6920.
- Carretero, J. C., Rojo, J., Díaz, N., Hamdouchi, C. & Poveda, A. (1995). *Tetrahedron*. In the press.
- Deslongchamps, P., Rowan, D. D., Pothier, N., Sauvé, T. & Saunders, J. K. (1981). Can. J. Chem. 59, 1105–1121.
- Gosselin, P., Bonfand, R., Hayes, R. & Maignan, C. (1994). Tetrahedron Asymm. 5, 781-784.
- Kato, Y. & Scheuer, P. J. (1974). J. Am. Chem. Soc. 96, 2245-2246. Mishima, H., Kurabayashi, M., Tamura, C., Saro, S., Kuwano, H.,
- Saito, A. & Aoki, A. (1975). Tetrahedron Lett. pp. 711-714.
- Molecular Structure Corporation (1992a). MSC/AFC Diffractometer Control Software. MSC, 3200 Research Forest Drive, The Woodlands, TX 77381, USA.
- Molecular Structure Corporation (1992b). TEXSAN. TEXRAY Structure Analysis Package. MSC, 3200 Research Forest Drive, The Woodlands, TX 77381, USA.
- Perron, F. & Albizati, K. F. (1989). Chem. Rev. 89, 1617-1661.
- Sheldrick, G. M. (1985). SHELXS86. Program for the Solution of Crystal Structures. Univ. of Göttingen, Germany.
- Sheldrick, G. M. (1991). SHELXTL-Plus. Version 4.1. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
- Sheldrick, G. M. (1993). SHELXL93. Program for the Refinement of Crystal Structures. Univ. of Göttingen, Germany.

Acta Cryst. (1995). C51, 2383-2386

9-(Carboxymethyl)-2,6-dichloropurine Ethyl Ester. An Intermediate for Peptidic Nucleic Acid Synthesis

DAVID M. C. CHAN, CARL H. SCHWALBE, GEETA SOOD AND WILLIAM FRASER

Pharmaceutical Sciences Institute, Aston University, Aston Triangle, Birmingham B4 7ET, England

(Received 3 May 1995; accepted 27 June 1995)

Abstract

The title compound (ethyl 2,6-dichloropurine-9-acetate, $C_9H_8Cl_2N_4O_2$) is an intermediate for the synthesis